
Automatic Data Distribution for CFD Applications on

Structured Grids

Michael Frumkin I and Jerry Yan 2

NAS Technical Report NAS-99-012, December 99

{frumkin,yan}@nas.nasa.gov

NAS Parallel Tools Group
NASA Ames Research Center

Mail Stop T27A-2
Moffett Field, CA 94035-1000

Abstract

Data distribution is an important step in implementation of any parallel algorithm.
The data distribution determines data traffic, utilization of the interconnection net-

work and affects the overall code efficiency. In recent years a number data distribu-

tion methods have been developed and used in real programs for improving data

traffic. We use some of the methods for translating data dependence and affinity

relations into data distribution directives. We describe an automatic data alignment

and placement tool (ADAPT) which implements these methods and show it results

for some CFD codes (NPB and ARC3D). Algorithms for program analysis and

derivation of data distribution implemented in ADAPT are efficient three pass

algorithms. Most algorithms have linear complexity with the exception of some

graph algorithms having complexity O(n 4) in the worst case.

1. MRJ Technology Solutions, Inc., NASA Contract NAS2-14303, Moffett Field, CA 94035-1000

2. NAS Division., NASA Ames Research Center, Moffett Field, CA 94035-1000

1. Introduction

Well organized data layout improves performance of a parallel pro-

gram. Data location and access patterns affect the amount of communica-

tions in the program, effectiveness of the cache, memory channel and

communication network. Data traffic planning was important for gaining

performance of vector and MIMD machines; it is still important for ccNU-

MA machines and will be more critical for machines with deeper memory

hierarchy.

Processing dependent data items requires the items to be loaded into

the same processor at the same time. Data dependence and data layout de-

termine the data traffic at the execution time. The volume and speed of

data traffic can be optimized by appropriate alignment and distribution of

the data.

In many applications (including Computational Fluid Dynamics

(CFD) on structured grids) the data dependences are well structured.

Such dependences can be expressed by structured affinity relations be-

tween arrays and can be translated into HPF (High Performance Fortran)

data alignment and data distribution statements. Derived in this way,

data distributions convert the program into a data parallel form with well

organized data traffic.

In this paper we present an Automatic Data Alignment and Place-

ment Tool (ADAPT) designed and implemented to facilitate conversion of

CFD codes to HPF. The tool was successfully applied to a number of CFD

codes, including NAS Parallel Benchmarks (NPB), [4], and ARC3D, [8].

ADAPT implements a number of known data distribution techniques (see

Section 9.), involving memory traffic reduction via data distribution opti-

mization. We start from the program model and an internal representa-

tion of the program. Then we analyze the array affinity on the loop level,

nest level and routine level and show how to translate the affinity relation

into HPF data mapping directives and discuss interprocedural data distri-

butions. Then we compare the data mapping directives generated by

2

ADAPT with data mappings used in HPF versions of NPB2.3 and

ARC3D. We conclude the paper with a survey of exiting data distribution

methods, conclusions, and plans for future work.

2. Program Model

ADAPT annotates FORTRAN programs with data traffic optimizing

data alignment and distribution directives (we will use the word "map-

ping" to refer to both directives) and with HPF interface blocks. ADAPT

inserts directives either immediately before loop nests or before the first

executable statement in a subroutine. These directives do not affect con-

trol flow of the program on single processor. The directives, however, can

have side effects on parallel machines if processors are not synchronized

before and after the execution of the REALIGN and REDISTRIBUTE (see

[[14]]) directives. We will assume that the program is compiled with an

HPF compliant compiler before execution and that the processors in-

volved in the execution are synchronized before and after REALIGN and

REDISTRIBUTE directives.

For analysis and transformation purposes, a FORTRAN program is

represented by control a flow graph [1]. The nodes of the graph represent

program basic blocks (BB) and arcs represent possible transitions between

BB. The source program will be parsed into a control flow graph augment-

ed with parse trees for each statement. ADAPT modifies the control flow

graph from which the resulting annotated program will be generated.

We reformulate the definition of dependence between grammar at-

tributes by saying "data item x depends on data item y if value of x de-

pends on value of y" (see [1] p. 284,). If the data items are defined by

variables X and Y respectively, we say that "X depends on Y'. If X and Y

are arrays, we call the set of pairs of dependent array elements "'affinity re-

lation between X and Y". The affinity relation can be translated into array

alignment. The appropriate distribution of aligned arrays reduces the

data movement performed by the program.

3. Loop Data Alignment

In this section we consider translation of data dependence on the loop

level into data alignment. Loop level alignment is derived from the affinity

relation between arrays referenced in the loop, and the loop Data Transfer

Graph (DTG).

Affinity relation. For a pair of arrays used in the same loop statement,

we define the affinity relation as a correspondence between array ele-

ments referred with the same value of the loop index. Let arrays a and b

are accessed with index functions idxa and id.x_b respectively. The affin-

ity relation can be represented as a list of dependent pairs:

do i=!, n

a(idxa(i))=b(idxb(i))

end do

c Aff(a,b)={ (idxa(i) ;idxb(i)), i=l n}

If there are multiple arrays in the statement, then for each pair of arrays,

such relation exists. Similarly, a control dependence results in affinity re-

lations between the arrays involved in the control statement and all arrays

in each BB immediately dominated by the statement.

Data Transfer Graph 1. Each variable used in the loop is represented as

a node in DTG. As shown in Figure 1, two nodes are connected by an arc

if the value of the first variable is used for computation of the second (in

other words, a data item described by the second variable depends on a

data item described by the first). We annotate each DTG arc connecting

two arrays with an affinity relation between the arrays. For array A and

any of its ancestor B in the DTG an affinity relation between A and B can

be inferred by applying the affinity chain rule along each directed path

from B to A.

1. The term Data Transfer Graph is used to avoid a confusion with Data Flow Graph where nodes
are program statements, with statements A and B connected by an arc if a variable assigned in A
is used in B.

4

do j : I, m _.'

xl = y(j,ill+k)

x2 : y(j,i!2+k) _[--

x(j,i21+k) = xl + x2

x(j,i22+k) = u*(xl - x2)

end do

FIGURE 1. Data Transfer Graph of internal loop of

vectorized autosorting FFT from FT benchmark.

The Affinity Chain Rule. Consider two statements in a loop

do i=l, n

b (idxbl (i)) :c (idxc (i))

!Aff (b,c):{ (idxbl (i) ;idxc (i)) }

a(idxa(i)):b(idxb2(i))

!Aff(a,b)={ (idxa(i) ;idxb2(i)) }

end do

The chain rule facilitates the expression of affinity relation for indirectly

dependent arrays:

Aff(a,c):{ (idxa(i) ;idxc(j)),

j : max{J: J<=i,idxbl(J))=idxb2(i) }}

The following example further illustrates how to iterate affinity rela-

tions:

do i=l, n

c(idxc0(i))=d(idxd(i))

!Aff(c,d):{ (idxc0(i) ;idxd(i)) }

b(idxbl(i))=c(idxc(i))

a(idxa(i)):b(idxb2(i))

end do

Aff(a,c)={ (idxa(i) ;idxc(j)),

j = max{J: J<=i,idxbl(J)):idxb2(i) }}

Aff (a, d) ={ (idxa (i) ;idxd (k)) ,

k:max{K: {K<:i, idxc0(K):idxc(j),

where j : max{J: J<:i,idxbl(J)):idxb2(i) }}

The affinity chain rule helps to compute the closure of affinity rela-

tions on a loop DTG. If applied to an array assigned in the loop, it will ex-

press in affinity relations of an array with each array it depends on. In

general, due to the .-:'..ax operation involved in the chain rule, the affinity

relation is too complex to be expressed explicitly 1. In practice, the affinity

relation often can be expressed explicitly or can be approximated by a

simple explicit relation. For example, if array indices are linear functions

of the loop index, then the affinity relation can be represented by a linear

mapping between array indices. The majority of affinity relations we en-

countered fall into three classes.

One-to-one affinity relations. This type of affinity relations can be trans-

lated into the alignment providing communication-free computations. As

shown in Figure 2, each element of a depends on a single element of b and

a single element of c. The HPF alignment directive asserts that these ele-

ments are aligned. As result, no communications are necessary (regard-

less of the distribution). For the translation to be possible at most one

subscript coefficient can be different from {+1,-1 }2.

!HPF$ ALIGN A(i)

!HPF$ ALIGN B(j)

!HPF$ DISTRIBUTE

do i=l, n

b(n-i) =c (

a(i-l) =b(

end do

c Aff (a,c)={ (

c or Aff(a,c)={ (

c or Aff(a,c)={ (

WITH B(i+3)

WITH C(5" (n-j)-4)

C (BLOCK)

5"i-4)

i+2)

i-I;5"j-4), j=maxfJ:J<=i,n-J=i+2}}

i-i;5"j-4), j=max{J:n-2<=2*i,J=n-i-2

i-I;5"n-5"i-14), n-2<=2"i}

FIGURE 2. Translation of one-to-one affinity relations into an aligmnent
providing communication free computations. Note that the alignment

statement for c is stronger then required by Aff(a,c).

Stencil Affinity Relations. The most common case we observe in our ap-

plications is one-to-few affinity relations between arrays (few means a

fixed number, independent on the array sizes and the number of loop it-

1. In Section 4. we show that the problem of checking that an element of multidimensional array
is affine with an element of another array is NP-complete.
2. The syntax of the ALIGN directive ([14], p. 116) allows to use only align dummies in align
subscript list and integer expressions of align dummies in align subscript.

6

erations). Explicit difference operators for structured discretization grids,

for example, give rise to such relations. These relations can be approxi-

mated by a stencil and we call them stencil relations. To optimize align-

ment for a stencil relation we note that for block distribution the message

size per partition point is the sum of distances of the alignment point from

the other stencil points, see Figure 3. To minimize the message size we use

bisectors (points splitting stencil points into two sets of equal size) as align-

ment points. So, for stencil affinity relations, we generate alignment as

bisectors of the affinity points in the alignee. A cyclic distribution for sten-

cil affinity relations would create an order of magnitude more communi-

cations than block distribution and is not considered as a valid option.

partition point

' I
1D grid_ a_ _ a_ _ Alignment,_,,4,P°int' sum of distances = 3

O O _\ 1 word to communicate

__ 2 words to communicate

I ,., ,., ,., 0 words to communicate
I

3 words to communicate per partition point

FIGURE 3. The message size per partition point is sum of distances of the

alignment point from the other stencil points.

True dependence. If there is a directed path in DTG which starts and

ends in the same node, then there is a dependence carried by the loop.

This path allows us to iterate the chain rule. As a result, each array ele-

ment depends on multiple elements of the same array. There are two im-

portant cases: the dependence is "true" when previously computed array

elements are used and "anti" when a used array element is overwritten,

[12]. The anti dependence can be removed from the loop by making an ex-

tra copy of the array. If the true dependence has a constant step d then a

cyclic distribution onto d processors would create communication free

computations.

4. Loop Nest Data Alignment and Distribution

If arrays referenced in a loop nest have more than one dimension (3

and 4 dimensional arrays are most common for structured grid CFD) then

we must consider all loops surrounding computations with the arrays to

obtain complete data affinity. In CFD applications, loop index bounds are

usually linear functions of the surrounding loop indices, hence the nest in-

dex domain can be described as a set of integer points in a polyhedron 1.

The chain rule for loop nests is similar to one for loops:

do I0 I from PI

b(idxbl(I))=c(idxc(I))

a(idxa(I))=b(idxb2(I))

i0 continue

Aff(a,c)={ (idxa(I) ;idxc(J)),

J=max{j: j<=I,idxbl(j)=idxb2(I)}} (*)

where the max operation and inequality {j<=I} are performed in the lexi-

cographical order imposed by the nest indices. For statements with differ-

ent nesting the chain rule is similar:

do i0 I from PI

do 20 J from PJ

b (idxbl (I,J)) =c (idxc (I,J))

20 continue

do 30 K from PK

a(idxa(I,K))=b(idxb2(I,K)

1. We will use multidimensional indices, functions and domains in this section. It will make

presentation more compact and the analogy between loops and nests more transparent. For exam-
ple, instead of

do i=l, nx

do j=l,ny(i)

do k=l,nz(i, j)

a (idxal (i, j, k), idxa2 (i, j, k), idxa3 (i, j, k)) =

b(idxbl (i, j ,k) , idxb2 (i, j ,k) , idxb3 (i, j ,k))

end do

end do

end do

we wiH write

do I0 I from PI

a(idxa(I))=b(idxb(I))

10 continue

8

3 0 continue

i0 continue

Aff (a,c):{ (idxa(I,K) ;idxc(L,J)) ,

(L, J) :max{ (i, j) :l<:I, idxbl (i, j)=idxb2 (I, K) } }

Example. The problem of checking that an element of array is affine with an

element of another array is NP-complete. We show that the Boolean Knapsack

Problem is a special case of calculating affinity for an array element in the

above shown relation (*). Let nest loop bounds are 0 and 1, meaning that

PI is a boolean cube. Let I=(1,...,1) which means that the inequality {j<=I}

is true for all j from PI. In this case if idxbl(j) is an arbitrary linear form of

j then calculating the value of J in (*) is a special case of the Boolean Knap-

sack Problem. In practice, however, the number of array dimensions is

fixed (it does not exceed 7 for CFD codes) and index functions are linear

functions. In this case the affinity relation can be calculated in polynomial

time by Lenstra's algorithm, see [22].

The chain rule allows the construction of an affinity relation for each

directed path coming to a from b and passing only through privatizable

arrays. The union of these relations over all directed paths to a from b

yields the final affinity relation between a and b. The relation lists all ele-

ments of b used for computation of the element of a and can be considered

as one-to-many mapping.

In most practical cases, this is a one-to-few stencil relation; a bisector 1

of the stencil gives an optimal alignment. Many CFD stencils have a center

of symmetry which can be used as the alignment point, see Figure 4.

1. Bisector of a finite set in n-dimensional space is a point such that each coordinate hyperplane
passing through it bisects the set. 3-point LU stencil shows that not every set has a bisector.

9

!HPF$ ALIGN C(i,*,*) WITH A(i-l,*,

!HPF$ DISTRIBUTE (BLOCK,*,*) : : A

do

*)

k=2, nz

do j:l,ny

do i=l, nx

A(i-l, j, k) =0.2* (C (i, j, k) +C (i, j-l, k) +

> C(i, j+l, k) +C(i, j ,k-l) +C (i, j ,k+l))

end do

end do

end do

C Aff(A,C):{ (i-l,j,k;i,j,k)

C &(i-l,j,k;i,j-l,k)&(i-l,j,k;i,j+l,k)

C &(i-l,j,k;i,j,k-1)&(i-l,j,k;i,j,k+l) }

C Stencil Affinity (I,0,0) , (I,-i,0) , (i,i,0),

C (i,0,-I) , (I,0,i)

C with bisector (i,0,0)

FIGURE 4. Optimizing communications by choosing stencil

bisector as the alignment point.

Alignment with Systems of Linear Forms. Each array reference in the

loop nest defines a mapping of the nest domain into array index space.

Here we consider linear mappings:

d = Al+b

where d and I are array and the nest indices respectively, A is a matrix with

constant elements and b is a vector with constant elements.

For linear index functions, the affinity relation can be expressed in the

form:

Aff(xl,x2)={ {Al*I+bl;A2*I+b 2) , I from PI}

We want to translate this relation into alignment directives of the form

!HPF$ ALIGN Yl(il in) WITH

Y2 (ml*j l+cl mn* jn+cn)

where ml,...,m n are integer multipliers, Cl,...,C n are integer shifts, (il,...,in)->

(Jl,...,Jn) is a dimension permutation, YI and Y2 are x l, x2 or auxiliary tem-

plates.

In a common case, when one matrix (say A1) is nonsingular, the rela-

tion may be written explicitly:

10

Aff(x l,x 2)={ (d !;A2AI-IdI-A2AI-IbI+b2) ,dlfrom AIPI+bl} (i)

If the matrix A2A1-1 can be transformed to an integer diagonal matrix di-

ag(ml,...,m n) by a permutation of the columns, then -A2Al-lbl+b2 =

(cl,...,c n) is an integer vector and the relation can be translated to an align-

ment directive:

!HPF$ ALIGN xl(il in) WITH

x2(ml*jl+cl mn*jn+cn) ! (2)

where (il,...,in)->(jl,...,jn)is the column permutation.

Ifthe matrix A2AI -Icannot be reduced to a diagonal form by permu-

tationof columns, then (I)would require presence of general linearforms

in the align subscript list which is not permitted in HPF, see [14], p. 116.

The relation (1) cannot be expressed by HPF ALIGN directive also if both

A2A1-1 and A1A2 -1 have noninteger elements. In such a case we can look

for a submatrix of A 1 and A 2 having the property. If such submatrix exists,

the alignment is performed on the corresponding set of indices.

The generation of alignment directives uses the alignment graph derived

from DTG. The nodes of the alignment graph are non privatizable arrays

of DTG. An arc connects two nodes having a directed path passing

through privatizable arrays only. We annotate each arc of the alignment

graph with a list of closures of affinity relations along each simple path

connecting the arrays in DTG 1. A closure of an affinity relation along a

path is a result of successive application of the chain rule along arcs of the

path.

For each arc in the alignment graph, we analyze the affinity relations

attached to it. If all relations are expressed in the form (1) and have the

same dimension permutation, then we will generate directive (2). In the

directive, each multiplier is the greatest common divisor of multipliers of

the relations, the shift is a bisector of the relations shifts and (il,...,in)->

1. This is the most expensive operation of the method. It involves a few matrix multi-
plications for computation of the set of directed paths and has complexity O(n4), where
n is the number DTG nodes.

11

(Jl,...,Jn) is the common dimension permutation.

If there are directed paths connecting A and B in both directions, then

there is self affinity for A (and B). The self affinity relation cannot be trans-

lated into alignment; it has to be translated into an array distribution. If

the dimension mapping is not identity, then the self affinity relation is too

complex to be handled and the array is flagged as nondistributed.

The self affinity relation can be iterated by applying the chain rule

along a circular path A->B->A multiple times. This creates affinity of each

element of A with a number elements of A. In general, the iterated affinity

is too complex and the array is also flagged as nondistributed. In the ma-

jority of practical cases, the affinity is simple and can be iterated explicitly

and translated into a distribution minimizing communications. Assume

that the self affinity relation can be expressed with linear forms:

Aff(A,A)={ (I;C*I-z) , I from PI}

Application of the chain rule gives

Aff (A,A)={ (I;C*J-z),

J=max{j: j<=I,j=C*I-z}, I,J from PI}

It shows that the affinity relation is void if C*I-z>I. In this case, the relation

is an anti-dependence and can be eliminated by making an extra copy of

A. If C*I-z<I and C is a nonsingular matrix (this property is necessary for

dropping the max operation in the relation) then the relation can be fur-

ther simplified:

Aff(A,A)=((I;C*(C*I-z)-z), I,C*I-z from PI}

and for k iterationswe have

Aff(A,A)={ (I;J) , j=ck*I - (ck-l+...+l)*z) ,

I,C-I*J+z from PI}

In most practical cases, C is the unit matrix and the relation can be further

simplified:

Aff(A,A)={ (I;I-k*z), I,I-(k-l)*z from PI}

If there are a number of circular paths which start (and end) with A,

the relations along the paths can be combined:

12

Aff(A,A):{ (I;I-v), V=kl*Zl+...+kq*Zq,

I,v-z I from PI} (3)

where Zl,...,Z q are so called dependence vectors, and l<=l<=q. This type of

dependence is considered in [2].

Let the affinity relation along one path from B to A be

Aff(B,A) = ((I;idxa(I)) , I from IP}

and idxa(l)<=I. Application of the chain rule to (3) shows that the same

vectors are dependence vectors for B.

Aff(B,A) = ((I;J-v), V=kl*Zl+...+kq*zq,

v-z I and I from PI,

J=max{j: j=idxa(I),j<=I} }=

: { (I;idx(I)-v), V:kl*Zl+...+kq*z q,

v-z I and I from PI}

Suppose there isa dimension orthogonal to the dependence vectors,

meaning thatallcomponents of the vectors in the dimension are zero. Dis-

tribution of the orthogonal dimension results in assigning of all affine ar-

ray elements to the same processor. Only inter-array communications will

be necessary for the computations. These communications can be opti-

mized with appropriate alignment as discussed above.

If an orthogonal dimension does not exist, no HPF distribution would

put all affine elements of A onto the same processor and every HPF distri-

bution of A would have dependences between distributed sections of A.

In this case, the generation of HPF directives should take into account the

compiler's ability to pipeline the computations. If the compiler is able to

perform pipelined processing of the sections with dependences, then the

distributed dimension should be chosen to minimizes section dependenc-

es (the dimension with the least number of dependence vectors having

nonzero components).

If the HPF compiler is not able to pipeline computations, the loop nest

should be reordered to perform computations with independent subset of

elements. Indices of the subsets can be identified by equation T*I = const,

where T is a time vector leaving all dependences in the past:

13

T*zl<O,...,T*Zq<O.

In the case when an orthogonal vector exists, we generate a template

and align both A and B with it. A maximal equivalence class of graph

nodes having directed paths in both directions is called "strongly connect-

ed component" of the graph. The set of strongly connected components

forms a directed acyclic graph, and we attach a template to each node of

the graph. The affinity relation for loop nest then expressed as alignment

of each array of the strongly connected component with the template, as

shown in Figure 5.

Generation of alignment statements for each connected component of

a directed graph with affinity relations attached to every arc is performed

in three steps.

• 1. A common template is generated for all leafs of the compo-

nent. Each leaf is connected to the template with arc and appro-

priate affinity relation attached to the arcs.

• 2. A rooted spanning tree is constructed for each component with

the template as the root.

• 3.For each non root node of the spanning tree, the alignment

directive is generated for the arc leading from the node to the

root (darker arcs in the Figure 6)

14

!HPF$

!HPFS

_HPFS

_HPF$

!HPF$

32

TEMPT-_ATE tmpi_nest_41(64,64)

DISTRZBUTE(BLOCK,BLOCK) : : tmpl_nest_41

ALIGN FR(:, :, *) WITH tmpl_nest_41(:, :)

ALIGN (:, :,-) WITH FR(:, :,*) :: ZX,ZY, ZZ,XX,XY XZ,YX,YY,YZ

ALIGN Q(:, : ,-,*) WITH FR(:, :,*)

DO 32 K=FC_OW, KUP, 1

KPI=KPLUS (K) !K+I

.W_MI=KMI:ZJS (K) !K - 1

DO 32 J=2,JM, 1

BZI=ZX(J, K, L) **2+ZY(J, K, L) **2+ZZ (J, K, L) **2

._HO=Q (J, K,L, I) *Q (J, K, L, 6)

U=XT+ (X_((J, K, L) *Q (J, K, L, 2) +XY (J, K, L) *Q (J, K L, 3) +XZ(J,K,L) *(

,K,L,4) t ,'Q(J,K,L,I)

V=YT+(YSX(J,K,L)*Q(J,K,L,2)+YY(J,K,L)*Q(J,K L,3)+YZ(J,K,L)*(

,K,L,4))/Q(J,K,L,I)

SI=-RHO'ZX(J,K,L)*(U*(Q(J+I,K,L,2) /Q(J+I,K,L,I)-Q(J-I,K,L,

Q (J-I,K, L, i)) *0.5+V* (Q(J,KPI, L, 2)/Q (J,KPI,L, I) -Q(J,KMI,L, 2'

(J, KMI,L,I))*0.5)

S2=-RHO'ZY(J, K, L) * (U* (Q (J+I,K, L, 3)/Q (J+l, K, L, i) -Q (J-l, K, L,

Q(J-I,K,L,I))*0.5+V*(Q(J,KPI,L,3)/Q(J,KPI,L,I)-Q(J,KMI,L,3

(J, KMI, L, i)) *0.5)

S3=-RHO'ZZ(J,K,L)*(U*(Q(J+I,K,L,4) /Q(J+I,K,L,I)-Q(J-I,K,L,

Q(J-I,K,L,I))*0.5+V*(Q(J,KPI,L,4) /Q(J,KPI,L,I)-Q(J,KMI,L,4]

(J,KMI,L,I))*0.5)

RI=SI+S2+S3

FR (J, K, L) = (-2. *RI/BZI+4. *FR (J, K, L1) -FR (J, K, L2)/3.

CONTINUE

CONTINUE

FIGURE 5. Example of the generated directives for one of the nests of

ARC3D

[vzq

FIGURE 6. The data transfer graph of the nest of the

Figure 5. Dark arcs show a spanning tree.

15

5. Subroutine Level Data Distribution

For data distribution on the subroutine level, we build a phase control

flow graph (PCFG) [15]. The graph nodes are loop nests having at least one

nonprivatizable array (following [15] we skip the loops (usually iteration

loops) with the index not used as an array index). Two loop nests are con-

nected by an arc if there is a possible transition from the last BB of one loop

nest to the first BB of another loop nest. Given an alignment graph and the

ALIGN and DISTRIBUTE directives (mapping directives) for each nest of

PCFG; is it possible to combine the directives for a pair of adjacent nests

in PCFG?

In simple cases (if alignment is the same in both nests) the answer can

be obtained by comparing distributed dimensions of arrays in each nest.

This approach, however, does not always work. In general, the answer

has to be obtained by attaching the second alignment graph to the first

graph and getting a mapping for the combined graph (in the same way as

we did it for loop nest graphs). If merging the mapping directives does not

decrease the number of distributed dimensions, the scope of the mapping

can be expanded to include both nests. Otherwise, the second nest should

be combined with another adjacent nest. If the common number of distrib-

uted dimensions is 0, then either a redistribution between the nests or

pipeline the computations with data having dependence between sec-

tions. We use a simple trade-off model between redistribution and pipe-

lining to choose between these alternatives. The redistribution of an array

of size N on p processors requires communication of N-N/p elements. The

pipelined computation requires to communicateffN*p/d elements, where

d is the array size in the pipelined direction andfis the number of the de-

pendence vectors. The cost of pipeline startup is a factor of l+pd/N of the

execution time. A more precise performance model that takes into account

the pipeline blocking factor, the startup and latency of the communica-

tions and overlapping of the communications with the pipelined compu-

tations and will be included in the next release of the tool. A similar model

16

is used to trade-off redistribution and serial execution of a nest.

Example. Some important CFD applications use AD! (alternative di-

rection implicit) sob.ers [20]. ADI solves in x-, y- and z- directions succes-

sively. Solver in a particular direction has dependences in one direction

and prohibits distribution in this direction (if pipelining is not available).

This means that there exists no single HPF distribution for an ADI solver.

Solvers in x- and y- directions have z as common distribution dimension

and solvers in y- and z- direction have x as common distribution dimen-

sion. In an ADI solver, the redistribution can be done either between x-

and y- solvers or between y- and z- solvers. An estimation of work neces-

sary for redistribution affects the choice of appropriate redistribution

point. Based on the analysis of the communication required for redistribu-

tion, x- and y- solvers were chosen to work with data distributed in the z-

direction in ARC3D.

The propagation of the mapping directives along arcs of PCFG results

in annotation of each source and sink of the graph with the directives.

These annotations, together with information on in/out/through subrou-

tine arguments and on the subroutine common blocks are used for deriv-

ing of the final redistributions and subroutine interfaces. The HPF

standard requires a subroutine to preserve the distribution of arrays visi-

ble to other subroutines. To comply with this requirement we perform ad-

justment of the annotations:

• For each array argument, we choose the mapping of the array at

one of the source node of PCFG; include this mapping (as pre-

scriptive mapping) at the subroutine interface; and remove the

mapping directives from the source node.

• For each leaf node of PCFG, we compare the final mapping of

each subroutine argument with the mapping on the leaf and

restore the mapping if necessary.

• For each array on a common block used in other subroutines, we

first inquire distribution of the array with HPF mapping inquiry

functions. On each leaf node of the PCFG we restore the map-

ping if necessary.

17

6. Interprocedural Data Distribution

In the considerations above, we assumed that statements do not in-

clude subroutine or function calls. To remove this assumption, we can ei-

ther inline the subroutine or use HPF subroutine interface to express the

data mapping in the subroutine. The inlining requires the same analysis

at each call statement and may not result in any useful distribution if there

is no single data distribution inside the routine. The use of HPF subrou-

tine interface limits the expression of the data mapping through the rou-

tine interface. The data mappings in subroutine must comply with the

HPF requirement of preserving data distributions by a callee.

In our tool, we have used the interprocedural data distribution meth-

ods developed at [9], [13], [15] and [19]. At each call site, the interproce-

dural analysis provides the mapping of dummy arguments onto actual

arguments. This mapping is used to attach the subroutine alignment

graph to the loop nest alignment graph and transform the mapping de-

clared at subroutine interface into the nest mapping. If the mappings are

compatible, meaning that the number of distributed dimensions for com-

bined graphs is larger than 0, then the scope of both mappings can be com-

bined, otherwise data redistribution at each call site will be necessary.

In many CFD programs, such as ARC3D, argument redimensioning

is a common construct. According to the HPF standard, in this case (see

[14], p. 162), both actual and dummy arguments must be declared as se-

quential. Passing array by reference to its first element is also not permit-

ted in HPF. The appropriate array section is required instead. To comply

with this HPF requirement, we had to rewrite by hand some subroutine

calls with passing an appropriate array section instead of an array ele-

ment.

7. Automatic Data Alignment and Placement Tool (ADAPT)

The data alignment and distribution techniques described in previous

18

sections have been implemented in ADAPT. The tool is written in C++

and is based on a few standard C++ classes such as List, Point, Vector and

Matrix. Some advanced classes such as Polynomial (symbolic polynomi-

al), SLForm (system of linear forms) and DGraph (NAS Directed Graph

class) have been implemented and widely used in the tool. The burden of

FORTRAN program parsing, analysis and code generation is placed on

CAPTools [11].

CAPTools (Computer Aided Parallelisation Tools) have been devel-

oped in University of Greenwich, UK [11]. CAPTools demonstrated the

ability to parse, analyze and parallelize a number of CFD applications, in-

cluding NPB and ARC3D. As a result of an agreement between the Uni-

versity of Greenwich and NASA Ames Research Center, the CAPTools

group provided Parallel Tools group at NAS with an API. This includes a

description of internal data structures used by CAPTools, internal pro-

gram representation (application data base), a number of utilities and a

code generator.

ADAPT uses the CAPTools generated database to perform a single

pass through the source program. It builds a PCFG for the whole applica-

tion and a data transfer graph (DTG) for each loop nest. It annotates each

arc with the affinity relation between arrays representing the arc ends.

The complexity of processing a nest with n arrays is O(n 4) and is dominat-

ed by computing the closure of affinity relations. As a result, data align-

ment directives are generated for each nest. The directives are then lifted

bottom up along the arcs of PCFG by creating subroutine interfaces and

either merging directives or placing redistribution directives.

8. Experiments with CFD Codes

We have performed some initial evaluation of the data distributions

generated by ADAPT. The tool was run on NPB working on single struc-

tured grid: BT, SP, LU and FT and on an aerodynamic application ARC3D.

A qualitative comparison with the data distributions used in handwritten

19

HPF implementations of NPB [7] and ARC3D [8] is given in Table 1. All

applications except LU use redistribution of data. The redistributions and

their locations in the code have been successfully determined by ADAPT

(line1). In all applications except SP some distributed arrays are passed as

subroutine arguments. ADAPT was able to use the interprocedural infor-

mation generated by CAPTools to move the distributions across subrou-

tine boundaries and generate HPF subroutine interfaces (lines 2 and 3).

For simple dependences between distributed array sections (BT,SP,LU

and ARC3D) ADAPT was able to ignore the redistributions and leave the

pipelining to the compiler, line 4. ADAPT was not able to generate redis-

tributions of some boundary data necessary for efficient computations of

boundary conditions (BC) in ARC3D, line 5 (note that BC was excluded

from the plot on Figure 7). Based on the analysis of index expressions and

loop nest indices ADAPT was able to detect and skip iteration loop, line

6, as well to perform qualification of privatizable arrays, line 7. Non of the

considered applications benefit from a cyclic distribution and ADAPT

was not set to generate it, lines 8 and 9.

TABLE 1. ADAPT (A) versus Manual (M) HPF Data Distribution for

Scientific Codes. [+ uses the feature, - does not use the feature, *

depends on compiler support, / automaticly generated]

Benchmark BT

DD Features M A

1. Redistribution + ,/

2. Interprocedura] + ,/

3. Interfaces +

4. Pipeline a *

5. BC redistribution

6. Time loop invariant +

7. Privatization (new) +

8. Block distribution +

9. Cyclic distribution

SP

M A

+ ,/

/ *

/ +

./ +

,/ +

,/

/

/

./

LU

M A

+ /

+ ,/

• /

+ /

+ ,/

+ ,/

FT

M A

+ ./

+ ,/

+ ,/

+ ./

- /

+ /

ARC3D

M A

+ ./

+ ,/

+ ,/

• /

-t-

+ /

+ /

+ ./

a. The feature can be used if the compiler is able to support pipelining

20

The worst casecomplexity of O(n 4) for computing the closure of the

affinitv relation (where n is the maximum number of nodes in the nest

DTG) was never reached, Table 2. The execution time (line 6) was domi-

nated by other factors such as computing of the affinity relations from in-

dex expressions and the lifting of the directives along edges of PCFG. The

complexity of these operations is proportional to the number of arcs in

DTG (line 3) and in PCFG (line 4) respectively. Overall ADAPT execution

time was significantly less than the CAPTools (line 5) analysis time.

TABLE 2. ADAPT Performance

Benchmark

1. Number of subroutines

2. Number of nests

BT

48

165

$P

33

51

(29,148)

LU

34

43

(39,480)

FT

31

17

(12,16)

ARC3D

33

82

(48,201)3. Max size of DTG (nodes,arcs) (30,381)

4. Size of PCFG (nodes,arcs) (165,220) (173,229) (174,208) (85,122) (253,297)

5. CAPTools analysis time (rnin.) 72 67 26 30 23

6. ADAPT CPU time (sec.) a 3 3 14 1 6

a. The execution time is on 150 MH SGI R5000 machine, including time for code generation and excluding

time for creating CAPTools data base.

Finally we have applied some hand editing to the code generated by

ADAPT for FT 1 and ARC3D. The editing was necessary for replacing in

subroutine arguments array element addresses by array sections and for

implementing the REDISTRIBUTION statement since the pghpf2.4 does

not support it. The implementing redistribution included coping distrib-

uted arrays to arrays with an alternative distribution and substituting the

arrays with alternative distribution instead of original arrays in the scope

of the REDISTRIBUTION directive. The resulted code was compiled with

the pghpf2.4 compiler from Portland Group Inc. The performance of the

code was comparable with the performance of the handwritten HPF code

and with the MPI code, Figure 7.

1. An inspection of the DTG and PCFG of the FT suggested that one of three 3D complex arrays is
redundant. A removing of this array from the benchmark reduced the memory requirements by

30% and slightly improved performance.

21

PT Petiole _ St Oriot_O00

102

101

RII_O Plrlorwnce on Origin?O00 (64x54x54)

x • .

FIGURE 7. Comparison of MPI version (dotted curve), handwritten HPF version
(solid curve) and ADAPT generated (dashed curve) versions of FT (left) and ARC3D

(right). The boundary condition subroutine excluded from ARC3D plot since it requires
a number of hand tuning steps.

9. Automatic Data Distribution Techniques

A number of methods for automatic data mapping have been de-

signed: [2],[5],[13],[15],[16],[17],[18],[23]. Some of the techniques were de-

veloped in a framework of an automatically parallelizing compiler, others

in the context of parallelizing tools. An extensive survey of data layout

methods is given in [15] and a case study of 4 approaches is given in [3].

General requirements to data distribution tools are listed in [21]. We will

concentrate on techniques suitable for distribution of data defined on a

single or multiple structured grids.

Most of the existing tools (with CAPTools an exception) were imple-

mented as a "demonstration of concept" and none of them have demon-

strated ability to analyze medium or large size codes and generate an

efficient HPF program.

An approach to data layout based on a decomposition of procedures

into phases and finding the best static alignment for each phase was de-

veloped by Li and Chen in [16]. The algorithm performs inter-dimension-

al alignment as a first step and intra-dimensional alignment as the second

22

step. The inter-dimensional alignment is formulated as a partition prob-

lem for the Component Affinity Graph (CAG). The authors propose a heu-

ristic algorithm to find the best alignment, in general, however, they show

that the problem is NP-complete.

Paradigm [18]. The approach is based on the analysis of the communi-

cation graph generated by Parafrase-2. The graph nodes are program

statements and graph edges are data flows between statements weighted

with cost of the communications. The graph is recursively decomposed

into a hierarchy of phases by removing a maximal cut on each step. The

decomposition of the communication graph stops at the point when a stat-

ic distribution can not be improved by further decomposition. Then a

phase transition graph is built with the edges weighted by the cost of re-

distributions. A critical path in the graph gives the best sequence of phases

and phase transitions. The tool have been successfully applied to 2D FFT

and ADI kernels.

SUIF [2],[17],[23]. An algorithm for dynamic data decomposition is

given in [2]. It is applicable to an arbitrary sequence of loop nests with

loop boundaries and array references described by linear functions. It in-

volves 3 main steps: 1. finding communication free decomposition, 2. if

such a decomposition can not be found the algorithm searches for a de-

composition with pipelined communications, 3. if such partition can not

be found the algorithm applies a heuristic to group the nests to find a par-

tition with pipelined communications within each group and redistribut-

ing data between the groups. The algorithm was enhanced in [17] to find

partitions minimizing synchronizations. The SUIF is a C compiler, re-

quires use of f 2 e to generate intermediate C code from FORTRAN code

and is not able to generate HPF code.

dHPF [13], [15]. The approach consists of reduction of the data distri-

bution problem to a Boolean optimization problem and applying of a

commercial package (CPLEX) for solving it. The reduction proceeds in a

number of steps. On the first step the program is partitioned into phases.

23

Then for each phase a CAG is built. The partitions of CAG are candidate

data layouts. The optimal layout is a critical path in the data layout graph

which nodes are the candidate layouts and edgesarepossible remappings

of the layouts between the phases.The edgesareweighted with anempir-

ical estimation of the remapping cost.The resulting optimization problem

is then formulated as 0-1 programming problem and solved with aid of

CPLEX. The tool was able to generate alignment and distribution state-

ments for ADI kernel and Erlebacher and Tomcatv benchmarks.

CAPTools[6], [11], [12].CAPTools hasan ability to apply block, cyclic

and block/cyclic distributions to data defined on structured [6] and on

unstructured [11] grids. Thedistribution requires the user to specify anar-

ray and a dimension to be distributed. As soon a distribution have been

defined a MPI code implementing "owner computes" rule is generated.

10. Conclusions and Future Work

We described methods for translating data dependence and affinity

relations into HPF data mapping directives. These methods have been

used for generating data distributions for HPF versions of NPB [7] and

ARC3D [8]. We believe that we found a fine line between useful generality

and intractable complexity in analyzing and treating data affinity. Our al-

gorithms for program analysis and derivation of data distributions are ef-

ficient three-pass algorithms. The majority of algorithms have linear

complexity with exception of some graph algorithms having complexity

O(n 4) (n is the number of variables used in the program nests) in the worst

case.

We implemented the methods in an Automatic Data Alignment and

Placement Tool (ADAPT). Initial comparison shows that the data map-

pings generated by ADAPT are very close to the data mapping directives

used in hand written HPF version of BT, LU and ARC3D. We aim ADAPT

at real CFD applications such as OVERFLOW [10].

24

Acknowledgments: The authors wish to acknowledge Haoqiang H.

Jin and Rob F. Van Der Wijngaart for useful discussions. The work pre-

sented in the paper is supported under NASA High Performance Com-

puting and Communication Program.

References

[1] A.V. Aho, R. Sethi and J.D. Ullman. Compilers: Principles, Techniques, and Tools. Addi-

son-Wesley Publ., Reading MA, 1988.

[2] J.M. Anderson, M.S. Lam. Global Optimizations for Parallelism and Locality on Scalable

Parallel Machines. In Proceedings of SIGPLAN'93 Conference on Programming Lan-
guages Design and Implementation (PLDI), Albuquerque, NM, June 23-25, 1993.

[3] E. Ayguade, J. Garcia, U. Kremer. Tools and Techniques for Automatic Data Layout: A

Case Study. Parallel Computing, v. 24 (1998) pp. 557-578.

[4] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, M. Yarrow. The NAS

Parallel Benchmarks 2.0. Report NAS-95-020, Dec. 1995. http://sci-

ence.nas.nasa.gov / Software/NPB.

[5] I. Couvertier-Reyes. Automatic Data and Computation Mapping for Distributed Memory

Machines. Ph.D dissertation, Louisiana State University, 1996.

[6] S.P. Johnson,C.S. Ierotheou, M. Cross. Automatic Parallel Code Generation on Distrib-

uted Memory Systems. Parallel Computing, V. 22(1996), pp. 227-258.

[7] M. Frumkin, H. Jin, J. Yah. Implementation of NAS Parallel Benchmarks in High Perfor-

mance Fortran. CDROM version of IPPS/SPDP 1999 Proceedings, April 12-16, 1999,

San Juan, Puerto Rico, 10 p.

[8] M. Frumkin, J. Yan. HPF Implementation of ARC3D. Frontiers'99, February 21-25,

1999, Annapolis, pp. 81-88.

[9] M.W. Hall, S. Hiranandani, K.Kennedy, C.-W. Tseng. lnterprocedural Compilation of

Fortran D for MIMD Distributed-Memory Machines. Supercomputing '92, pp. 522-534,

Minneapolis, MN, Nov. 1992.

[10] D.C. Jespersen. Parallelism and Overflow. NAS Technical Report NAS-98-013, October
1998.

[11] S.P. Johnson, K. McManus, C.S. Ierotheou, M. Cross. Semi-automatic Parallelization of

Unstructured Mesh Code Using Domain Decomposition. Submitted to Parallel Comput-
ing.

[12] S.P. Johnson, M. Cross, M.G. Everett. Exploitation of Syrnbolic Information in lnterpro-

cedural Dependence Analysis. Parallel Computing, v. 22 (1966) pp.197-226.

[13] K. Kennedy, U. Kremer. Automatic Data Layout for High Performance Fortran. Super-

computing '95, San Diego, CA, December 1995.

[14] C.H. Koelbel, D.B. Loverman, R. Shreiber, GL. Steele Jr., M.E. Zosel. The High Perfor-

mance Fortran Handbook. MIT Press, 1994.

[15] U. Kremer. Automatic Data Layout for Distributed Memory Machines, PhD. thesis, Rice
Univ., October 1995, CRPC-TR95-599-S.

[16] J. Li, M. Chen. The Data Alignment Phase in Compiling Programs for Distributed-Mem-

ory Machines. J. of Parallel and Distr. Computing, V. 13 n. 2, August 1991, pp. 213-
221.

[17] A.W. Lim, M.S. Larn. Maximizing Parallelism and Minimizing Synchronization with

Affine Partitions. Parallel Computing, v. 24 (1998), pp. 445-475.

25

[18] D.J. Palermo, P. Banerjee. Automatic Selection of Dynamic Data Partitioning Schemes for
Distributed-Memory Multicomputers. In Proceedings of the 8th Workshop on Lan-

guages and Compilers for Parallel Computing, Columbus, OH, August 1995, LNCS,

v. 1033, pp. 392-406, Springer Verlag, 1996.

[19] D.J. Palermo, E.W. Hodges IV, P. Banerjee. Interprocedural Array Redistribution Data-

Flow Analysis. 9th Workshop on Languages and Compilers for Parallel Computing,
San Jose, CA, August 8-10, 1996.

[20] T.H. Pulliam, D.S. Chaussee. A Diagonal Form of an Implicit Approximate Factorization

Algorithm. Journal of Computational Physics, Vol. 29, p.1037, 1975.

[21] J._L. Pazat. Tools for High Performance Fortran: A Survey. LNCS, v. 1132, 1996, pp. 134-
158.

[22] A. Schrijver. Theory of Linear and Integer Programming. J. Wiley & Sons, 1998, pp. 256-
259.

[23] M.E. Wolf, M.S. Lain. A Data Locality Optimizing Algorithm. In Proceedings of the

SIGPLAN'91 Conference on Programming Language Design and Implementation,
June 1991, pp. 30-44.

26

